Add like
Add dislike
Add to saved papers

Fully Dynamic G 3 W 2 Self-Energy for Finite Systems: Formulas and Benchmark.

Over the years, Hedin's GW self-energy has been proven to be a rather accurate and simple approximation to evaluate electronic quasiparticle energies in solids and in molecules. Attempts to improve over the simple GW approximation, the so-called vertex corrections, have been constantly proposed in the literature. Here, we derive, analyze, and benchmark the complete second-order term in the screened Coulomb interaction W for finite systems. This self-energy named G 3 W 2 contains all the possible time orderings that combine 3 Green's functions G and 2 dynamic W . We present the analytic formula and its imaginary frequency counterpart, with the latter allowing us to treat larger molecules. The accuracy of the G 3 W 2 self-energy is evaluated on well-established benchmarks (GW100, Acceptor 24, and Core 65) for valence and core quasiparticle energies. Its link with the simpler static approximation, named SOSEX for static screened second-order exchange, is analyzed, which leads us to propose a more consistent approximation named 2SOSEX. In the end, we find that neither the G 3 W 2 self-energy nor any of the investigated approximations to it improve over one-shot G 0 W 0 with a good starting point. Only quasi-particle self-consistent GW HOMO energies are slightly improved by addition of the G 3 W 2 self-energy correction. We show that this is due to the self-consistent update of the screened Coulomb interaction, leading to an overall sign change of the vertex correction to the frontier quasiparticle energies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app