Add like
Add dislike
Add to saved papers

Accurate Memory Kernel Extraction from Discretized Time-Series Data.

Memory effects emerge as a fundamental consequence of dimensionality reduction when low-dimensional observables are used to describe the dynamics of complex many-body systems. In the context of molecular dynamics (MD) data analysis, accounting for memory effects using the framework of the generalized Langevin equation (GLE) has proven efficient, accurate, and insightful, particularly when working with high-resolution time series data. However, in experimental systems, high-resolution data are often unavailable, raising questions about the impact of the data resolution on the estimated GLE parameters. This study demonstrates that direct memory extraction from time series data remains accurate when the discretization time is below the memory time. To obtain memory functions reliably, even when the discretization time exceeds the memory time, we introduce a Gaussian Process Optimization (GPO) scheme. This scheme minimizes the deviation of discretized two-point correlation functions between time series data and GLE simulations and is able to estimate accurate memory kernels as long as the discretization time stays below the longest time scale in the data, typically the barrier crossing time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app