Add like
Add dislike
Add to saved papers

Drosophila Smad2 degradation occurs independently of linker phosphorylations.

TGF-β signals are important for proliferation, differentiation, and cell fate determination during embryonic development and tissue homeostasis in adults. Drosophila Activin/TGF-β signals are transduced intracellularly when its transcription factor dSmad2 (also called Smad on X or Smox) is C-terminally phosphorylated by pathway receptors. Recently, it has been shown that receptor-activated dSmad2 undergoes bulk degradation, however, the mechanism of how this occurs is unknown. Here we investigated if two putative linker phosphorylation sites are involved in dSmad2 degradation. We demonstrate that degradation of activated-dSmad2 occurs independently of threonine phosphorylation at linker sites 252 and 277. We also show that dSmad2 degradation is not carried out by cellular proteasomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app