Add like
Add dislike
Add to saved papers

Volatile carbonyl metabolites analysis of nanoparticle exposed lung cells in an organ-on-a-chip system.

Talanta 2024 April 8
The evaluation of nanoparticles (NPs) cytotoxicity is crucial for advancing nanotechnology and assessing environmental pollution. However, existing methods for NPs cytotoxicity evaluation suffer from limited accuracy and inadequate information content. In the study, we developed a novel detection platform that enables the identification of cellular carbonyl metabolites at the organ level. The platform is integrated with a cell co-culture lung organ chip (LOC) and a micropillar concentrator. Notably, our work represents the successful measurement of the amounts of cellular metabolites on LOC system. The volatile carbonyl metabolites (VCMs) generated by cells exposure to various types of NPs with different concentrations were captured and detected by high-resolution mass spectrometry (MS). Compared with conventional cell viability and reactive oxygen species (ROS) analysis, our method discerns the toxicological impact of NPs at low concentrations by analyzed VCM at levels as low as ppb level. The LOC system based metabolic gas detection confirmed that low concentrations of NPs have a toxic effect on the cell model, which was not reflected in the fluorescence detection, and the effect of NP material is more significant than the size effect. Furthermore, this method can distinguish different NPs acting on cell models through cluster analysis of multiple VCMs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app