Add like
Add dislike
Add to saved papers

Single cell glycan-linkages profiling for hepatocellular carcinoma early diagnosis using lanthanide encoded bacteriophage MS2 based ICP-MS.

Talanta 2024 April 6
Early diagnosis is paramount for enhancing survival rates and prognosis in the context of malignant diseases. Hepatocellular carcinoma (HCC), the second leading cause of cancer-related deaths worldwide, poses significant challenges for its early detection. In this study, we present an innovative approach which contributed to the early diagnosis of HCC. By lanthanide encoding signal amplification to map glycan-linkages at the single-cell level, the minute quantities of "soft" glycan-linkages on single cell surface were converted into "hard" elemental tags through the use of an MS2 signal amplifier. Harnessing the power of lanthanides encoded within MS2, we achieve nearly three orders of magnitude signal amplification. These encoded tags are subsequently quantified using single-cell inductively coupled plasma mass spectrometry (SC-ICP-MS). Linear discriminant analysis (LDA) identifies seven specific glycan-linkages (α-2,3-Sia, α-Gal, α-1,2-Fuc, α-1,6-Fuc, α-2,6-Sia, α-GalNAc, and Gal-β-1,3-GalNAc) as biomarkers. Our methodology is initially validated at the cellular level with 100% accuracy in discriminating between hepatic carcinoma HepG2 cells and their normal HL7702 cells. We apply this approach to quantify and classify glycan-linkages on the surfaces of 55 clinical surgical HCC specimens. Leveraging these seven glycan-linkages as biomarkers, we achieve precise differentiation between 8 normal hepatic specimens, 40 early HCC specimens, and 7 colorectal metastasis HCC specimens. This pioneering work represents the first instance of employing single-cell glycan-linkages as biomarkers promising for the early diagnosis of HCC with a remarkable 100% predictive accuracy rate, which holds immense potential for enhancing the feasibility and precision of HCC diagnosis in clinical practice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app