Add like
Add dislike
Add to saved papers

Silica Confinement for Stable and Magnetic Co-Cu Alloy Nanoparticles in Nitrogen-Doped Carbon for Enhanced Hydrogen Evolution.

Angewandte Chemie 2024 April 11
Ammonia borane (AB) with 19.6 wt.% H2 content is widely considered a safe and efficient medium for H2 storage and release. Co-based nanocatalysts present strong contenders for replacing precious metal-based catalysts in AB hydrolysis due to their high activity and cost-effectiveness. However, precisely adjusting the active centers and surface properties of Co-based nanomaterials to enhance their activity, as well as suppressing the migration and loss of metal atoms to improve their stability, presents many challenges. In this study, mesoporous-silica-confined bimetallic Co-Cu nanoparticles embedded in nitrogen-doped carbon (CoxCu1-x@NC@mSiO2) were synthesized using a facile mSiO2-confined thermal pyrolysis strategy. The obtained product, an optimized Co0.8Cu0.2@NC@mSiO2 catalyst, exhibits enhanced performance with a turnover frequency of 240.9 molH2∙molmetal∙min-1 for AB hydrolysis at 298 K, surpassing most noble-metal-free catalysts. Moreover, Co0.8Cu0.2@NC@mSiO2 demonstrated magnetic recyclability and extraordinary stability, with a negligible decline of only 0.8% over 30 cycles of use. This enhanced performance was attributed to the synergistic effect between Co and Cu, as well as silica confinement. This work proposes a promising method for constructing noble-metal-free catalysts for AB hydrolysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app