Add like
Add dislike
Add to saved papers

Crystallization Regulation and Lead Leakage Prevention Simultaneously for High-Performance CsPbI 2 Br Perovskite Solar Cells.

All-inorganic CsPbI2 Br perovskite is striking as a result of the reasonable band gap and thermal stability. However, the notorious air instability, unsatisfactory conversion efficiencies, and toxic water-soluble Pb2+ ions have greatly limited the further development of CsPbI2 Br-based devices. Herein, a facile strategy is developed to prepare efficient and air-stable CsPbI2 Br-based perovskite solar cells (PSCs) with in situ lead leakage protection. With the introduction of 2,2'-dihydroxy-4,4'-dimethoxy-5,5'-disulfobenzophenone disodium salt (BP-9) into the CsPbI2 Br precursor solution, the crystallization of perovskite can be regulated at a reduced trap density, the uncoordinated Pb2+ ions and electron-rich defects in the structure can be passivated to suppress non-radiative recombination, and the energy level arrangement can be optimized to improve charge carrier transport. Consequently, the optimized PSC achieved a championship efficiency of 17.11%, accompanied by negligible J - V hysteresis and remarkably improved air stability. More importantly, the strong chelation of BP-9 with water-soluble Pb2+ ions minimizes the leakage of toxic lead in the perovskite structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app