Add like
Add dislike
Add to saved papers

THz spectroscopy on the amino acids L-serine and L-cysteine.

We present a detailed study on the temperature-dependent THz spectra of the polycrystalline amino acids, L-serine and L-cysteine, for wavenumbers from 20 to 120 cm-1 and temperatures from 4 to 300 K. Even though the structure of these two amino acids is very similar, with a sulfur atom in the side chain of cysteine instead of an oxygen atom in serine, the excitation spectra are drastically different. Obviously, the vibrational dynamics strongly depend on the ability of cysteine to form sulfur-hydrogen bonds. In addition, cysteine undergoes an order-disorder type phase transition close to 80 K, documented by additional specific heat experiments, with accompanying anomalies in the THz results. On increasing temperatures, well-defined vibrational excitations exhibit significant shifts in the eigenfrequencies with concomitant line-broadening yielding partly overlapping modes. Interestingly, several modes completely lose all their dipolar strength and are unobservable under ambient conditions. Comparing the recent results to the published work utilizing THz, Raman, and neutron-scattering techniques, as well as with ab initio simulations, we aim at a consistent analysis of the results ascribing certain eigenfrequencies to distinct collective lattice modes. We document that THz spectra can be used to fine-tune the parameters of model calculations and as fingerprint properties of certain amino acids. In addition, we analyzed the low-temperature heat capacity of both the compounds and detected strong excess contributions compared to the canonical Debye behavior of crystalline solids, indicating soft excitations and a strongly enhanced phonon-density of states at low frequencies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app