Add like
Add dislike
Add to saved papers

Impact of Surface Ligand Identity and Density on the Thermodynamics of H Atom Uptake at Polyoxovanadate-Alkoxide Surfaces.

Inorganic Chemistry 2024 April 10
An understanding of how molecular structure influences the thermodynamics of H atom transfer is critical to designing efficient catalysts for reductive chemistries. Herein, we report experimental and theoretical investigations summarizing structure-function relationships of polyoxovanadate-alkoxides that influence bond dissociation free energies of hydroxide ligands located at the surface of the cluster. We evaluate the thermochemical descriptors of O-H bond strength for a series of clusters, namely [V6 O13- x (OH) x (TRIOLR )2 ]-2 ( x = 2, 4, 6; R = NO2 , Me) and [V6 O11- x (OMe)2 (OH) x (TRIOLNO2 )2 ]-2 , via computational analysis and open circuit potential measurements. Our findings reveal that modifications to the TRIOL ligand (e.g., changing from the previously reported electron withdrawing nitro-backed ligand to the electron-donating methyl variant) have limited influence on the strength of surface O-H bonds as a result of near complete thermodynamic compensation in these systems (i.e., correlated changes in redox potential and cluster basicity). In contrast, changes in surface density of alkoxide ligands via direct alkoxylation of the polyoxovanadate-alkoxide surface result in measurable increases in bond dissociation free energies of surface O-H bonds for the mixed-valent derivatives. Our findings indicate that the extent of (de)localization of electron density across the cluster core has an impact on the bond dissociation free energies of surface O-H bonds across all oxidation states of the assembly.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app