Add like
Add dislike
Add to saved papers

Tensile Strain-Mediated Bimetallene Nanozyme for Enhanced Photothermal Tumor Catalytic Therapy.

Angewandte Chemie 2024 April 10
Nanozymes have demonstrated significant potential in combating malignant tumor proliferation through catalytic therapy. However, the therapeutic effect is often limited by insufficient catalytic performance. In this study, we propose the utilization of strain engineering in metallenes to fully expose the active regions due to their ultrathin nature. Here, we present the first report on a novel tensile strain-mediated local amorphous RhRu (la-RhRu) bimetallene with exceptional intrinsic photothermal effect and photo-enhanced multiple enzyme-like activities. Through geometric phase analysis, electron diffraction profile, and X-ray diffraction, it is revealed that crystalline-amorphous heterophase boundaries can generate approximately 2% tensile strain in the bimetallene. The ultrathin structure and in-plane strain of the bimetallene induce an amplified strain effect. Both experimental and theoretical evidence support the notion that tensile strain promotes multiple enzyme-like activities. Functioning as a tumor microenvironment (TME)-responsive nanozyme, la-RhRu exhibits remarkable therapeutic efficacy both in vitro and in vivo. This work highlights the tremendous potential of atomic-scale tensile strain engineering strategy in enhancing tumor catalytic therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app