Add like
Add dislike
Add to saved papers

Non-canonical adrenergic neuromodulation of motoneuron intrinsic excitability through β-receptors in wild-type and ALS mice.

bioRxiv 2024 March 30
Altered neuronal excitability and synaptic inputs to motoneurons are part of the pathophysiology of Amyotrophic Lateral Sclerosis. The cAMP/PKA pathway regulates both of them but therapeutic interventions at this level are limited by the lack of knowledge about suitable pharmacological entry points. Here we used transcriptomics on microdissected and in situ motoneurons to reveal the modulation of PKA-coupled receptorome in SOD1(G93A) ALS mice, vs WT, demonstrating the dysregulation of multiple PKA-coupled GPCRs, in particular on vulnerable MNs, and the relative sparing of β-adrenergic receptors. In vivo MN electrophysiology showed that β2/β3 agonists acutely increase excitability, in particular the input/output relationship, demonstrating a non-canonical adrenergic neuromodulation mediated by β2/β3 receptors both in WT and SOD1 mice. The excitability increase corresponds to the upregulation of immediate-early gene expression and dysregulation of ion channels transcriptome. However the β2/β3 neuromodulation is submitted to a strong homeostasis, since a ten days delivery of β2/β3 agonists results in an abolition of the excitability increase. The homeostatic response is largely caused by a substantial downregulation of PKA-coupled GPCRs in MNs from WT and SOD1 mice. Thus, β-adrenergic receptors are physiologically involved in the regulation of MN excitability and transcriptomics, but, intriguingly, a strong homeostatic response is triggered upon chronic pharmacologic intervention.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app