Add like
Add dislike
Add to saved papers

CH 3 Radical Generation in Microplasmas for Up-Conversion of Methane.

The conversion of methane, CH4 , into higher value chemicals using low temperature plasmas is challenged by both improving efficiency and selectivity. One path toward selectivity is capturing plasma-produced methyl radicals, CH3 , in a solvent for aqueous processing. Due to the rapid reactions of methyl radicals in the gas phase, the transport distance from the production of the CH3 to its solvation should be short, which then motivates the use of microplasmas. The generation of CH3 in Ar/CH4 /H2 O plasmas produced in nanosecond pulsed dielectric barrier discharge microplasmas is discussed using results from a computational investigation. The microplasma is sustained in the channel of a microfluidic chip in which the solvent flows along one wall or in droplets. CH3 is primarily produced by electron-impact of and dissociative excitation transfer to CH4 , as well as CH2 reacting with CH4 . CH3 is rapidly consumed to form C2 H6 which, in spite of being subject to these same dissociative processes, accumulates over time, as do other stable products including C3 H8 and CH3 OH. The gas mixture and electrical properties were varied to assess their effects on CH3 production. CH3 production is largest with 5% CH4 in the Ar/CH4 /H2 O mixture due to an optimal balance of electron-impact dissociation, which increases with CH4 percentage, and dissociative excitation transfer and CH2 reacting with CH4 , which decreases with CH4 percentage. Design parameters of the microchannels were also investigated. Increasing the permittivity of the dielectrics in contact with the plasma increased the ionization wave intensity, which increased CH3 production. Increased energy deposition per pulse generally increases CH3 production as does lengthening pulse length up to a certain point. The arrangement of the solvent flow in the microchannel can also affect the CH3 density and fluence to the solvent. The fluence of CH3 to the liquid solvent is increased if the liquid is immersed in the plasma as a droplet or is a layer on the wall where the ionization wave terminates. The solvation dynamics of CH3 with varying numbers of droplets was also examined. The maximum density of solvated methyl radicals CH3aq occurs with a large number of droplets in the plasma. However, the solvated CH3aq density can rapidly decrease due to desolvation, emphasizing the need to quickly react with the solvated species in the solvent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app