Add like
Add dislike
Add to saved papers

Spatially resolved current density distribution in GaN-based flip-chip green mini-LEDs by microscopic hyperspectral imaging and modified two-level modeling.

Optics Express 2024 March 12
A modified two-level model is proposed to study the spatially resolved current density distribution of GaN-based green miniaturized light-emitting diodes (mini-LEDs), combining with microscopic hyperspectral imaging. We found that the spatially resolved current density distribution reveals both the radiative and non-radiative recombination mappings, which can also be provided separately by this model. In addition, higher current density is not necessarily correlated with higher photon emission, especially for the regions around the electrode edges, where the high current density suggests current crowding and defect-related non-radiative recombination. The current density distribution of mini-LEDs is further verified by the laser-beam-induced current (LBIC) and the spatially resolved mappings of peak wavelength and FWHM. The modified two-level model also offers radiative/non-radiative mappings and is proved to be beneficial to determine the micro-zone current density distribution and to reveal the intrinsic radiative/non-radiative recombination mechanism of mini-LEDs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app