Add like
Add dislike
Add to saved papers

Designing a Magnesium/Sodium Hybrid Battery Using Hierarchical Iron Selenide Architecture as Cathode Material and Modified Dual-Ion Salts in Ether as Electrolyte.

Nano Letters 2024 April 4
We developed a magnesium/sodium (Mg/Na) hybrid battery using a hierarchical disk-whisker FeSe2 architecture (HD-FeSe2 ) as the cathode material and a modified dual-ion electrolyte. The polarizable Se2- anion reduced the Mg2+ migration barrier, and the 3D configuration possessed a large surface area, which facilitated both Mg2+ /Na+ cation diffusion and electron transport. The dual-ion salts with NaTFSI in ether reduced the Mg plating/stripping overvoltage in a symmetric cell. The hybrid battery exhibited an energy density of 260.9 Wh kg-1 and a power density of 600.8 W kg-1 at 0.2 A g-1 . It showed a capacity retention of 154 mAh g-1 and a Coulombic efficiency of over 99.5% under 1.0 A g-1 after 800 long cycles. The battery also displayed outstanding temperature tolerance. The findings of 3D architecture as cathode material and hybrid electrolyte provide a pathway to design a highly reliable Mg/Na hybrid battery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app