Add like
Add dislike
Add to saved papers

Whole-genome resequencing of Chinese indigenous sheep provides insight into the genetic basis underlying climate adaptation.

BACKGROUND: Chinese indigenous sheep are valuable resources with unique features and characteristics. They are distributed across regions with different climates in mainland China; however, few reports have analyzed the environmental adaptability of sheep based on their genome. We examined the variants and signatures of selection involved in adaptation to extreme humidity, altitude, and temperature conditions in 173 sheep genomes from 41 phenotypically and geographically representative Chinese indigenous sheep breeds to characterize the genetic basis underlying environmental adaptation in these populations.

RESULTS: Based on the analysis of population structure, we inferred that Chinese indigenous sheep are divided into four groups: Kazakh (KAZ), Mongolian (MON), Tibetan (TIB), and Yunnan (YUN). We also detected a set of candidate genes that are relevant to adaptation to extreme environmental conditions, such as drought-prone regions (TBXT, TG, and HOXA1), high-altitude regions (DYSF, EPAS1, JAZF1, PDGFD, and NF1) and warm-temperature regions (TSHR, ABCD4, and TEX11). Among all these candidate genes, eight ABCD4, CNTN4, DOCK10, LOC105608545, LOC121816479, SEM3A, SVIL, and TSHR overlap between extreme environmental conditions. The TSHR gene shows a strong signature for positive selection in the warm-temperature group and harbors a single nucleotide polymorphism (SNP) missense mutation located between positions 90,600,001 and 90,650,001 on chromosome 7, which leads to a change in the protein structure of TSHR and influences its stability.

CONCLUSIONS: Analysis of the signatures of selection uncovered genes that are likely related to environmental adaptation and a SNP missense mutation in the TSHR gene that affects the protein structure and stability. It also provides information on the evolution of the phylogeographic structure of Chinese indigenous sheep populations. These results provide important genetic resources for future breeding studies and new perspectives on how animals can adapt to climate change.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app