Add like
Add dislike
Add to saved papers

MB16 - (M = Sc, Y, La): Perfect Bowl-like Boron Clusters.

The introduction of transition-metal doping has engendered a remarkable array of unprecedented boron motifs characterized by distinctive geometries and bonding, particularly those heretofore unobserved in pure boron clusters. In this study, we present a perfect (no defects) boron framework manifesting an inherently high-symmetry, bowl-like architecture, denoted as MB16- (M = Sc, Y, La). In MB16-, the B16 is coordinated to M atoms along the C5v-symmetry axis. The bowl-shaped MB16- structure is predicted to be the lowest-energy structure with superior stability, owing to its concentric (2π+10π) dual π aromaticity. Notably, the C5v-symmetry bowl-like B16- is profoundly stabilized through the doping of an M atom, facilitated by strong d-pπ interactions between M and boron motifs, in conjunction with additional electrostatic stabilization by an electron transfer from M to the boron motifs. This concerted interplay of covalent and electrostatic interactions between M and bowl-like B16 renders MB16- a species of exceptional thermodynamic stability, thus making it a viable candidate for gas-phase experimental detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app