Add like
Add dislike
Add to saved papers

A microporous bismuth-based MOF for efficient separation of acetylene from carbon dioxide.

The separation of acetylene from carbon dioxide is challenging due to their almost identical molecular sizes and volatilities. Metal-organic frameworks (MOFs) in general are strong candidates for the separation of gas mixtures owing to the presence of functional pore surfaces that can selectively capture specific target molecules. Herein, we report a stable and easily synthesized bismuth-based MOF, Bi-BTC, which can achieve the separation of acetylene and carbon dioxide. We performed a detailed analysis of the sorption properties of the Bi-MOF. Bi-BTC shows good adsorption capacities for C2 H2 with a capacity of 53.8 cm3 g-1 at 298 K and 1.0 bar, and C2 H2 /CO2 selectivity of 5.14/7.69 at 298 K and 1.0/0.1 bar. IAST selectivity calculations indicate that Bi-BTC possesses good separation capacity, and dynamic breakthrough experiments were performed to prove the separation of C2 H2 and CO2 . Bi-MOFs as a group of relatively less studied types of MOFs have interesting adsorption characteristics, and this study on Bi-based MOF will enrich three-dimensional Bi-MOF adsorbents for gas adsorption and separation applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app