Add like
Add dislike
Add to saved papers

Stalling of Transcription by Putative G-quadruplex Sequences and CRISPR-dCas9.

bioRxiv 2024 March 18
Putative G-quadruplex forming sequences (PQS) have been identified in promoter sequences of prominent genes that are implicated among others in cancer and neurological disorders. We explored mechanistic aspects of CRISPR-dCas9-mediated gene expression regulation, which is transient and sequence specific unlike alternative approaches that lack such specificity or create permanent mutations, using the PQS in tyrosine hydroxylase ( TH ) and c-Myc promoters as model systems. We performed in vitro ensemble and single molecule investigations to study whether G-quadruplex (GQ) structures or dCas9 impede T7 RNA polymerase (RNAP) elongation process and whether orientation of these factors is significant. Our results demonstrate that dCas9 is more likely to block RNAP progression when the non-template strand is targeted. While the GQ in TH promoter was effectively destabilized when the dCas9 target site partially overlapped with the PQS, the c-Myc GQ remained folded and stalled RNAP elongation. We also determined that a minimum separation between the transcription start site and the dCas9 target site is required for effective stalling of RNAP by dCas9. Our study provides significant insights about the factors that impact dCas9-mediated transcription regulation when dCas9 targets the vicinity of sequences that form secondary structures and provides practical guidelines for designing guide RNA sequences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app