Add like
Add dislike
Add to saved papers

An octopamine-specific GRAB sensor reveals a monoamine relay circuitry that boosts aversive learning.

bioRxiv 2024 March 13
Octopamine (OA), analogous to norepinephrine in vertebrates, is an essential monoamine neurotransmitter in invertebrates that plays a significant role in various biological functions, including olfactory associative learning. However, the spatial and temporal dynamics of OA in vivo remain poorly understood due to limitations associated with the currently available methods used to detect it. To overcome these limitations, we developed a genetically encoded G PC R a ctivation- b ased (GRAB) OA sensor called GRAB OA1.0 . This sensor is highly selective for OA and exhibits a robust and rapid increase in fluorescence in response to extracellular OA. Using GRAB OA1.0 , we monitored OA release in the Drosophila mushroom body (MB), the fly's learning center, and found that OA is released in response to both odor and shock stimuli in an aversive learning model. This OA release requires acetylcholine (ACh) released from Kenyon cells, signaling via nicotinic ACh receptors. Finally, we discovered that OA amplifies aversive learning behavior by augmenting dopamine-mediated punishment signals via Octβ1R in dopaminergic neurons, leading to alterations in synaptic plasticity within the MB. Thus, our new GRAB OA1.0 sensor can be used to monitor OA release in real-time under physiological conditions, providing valuable insights into the cellular and circuit mechanisms that underlie OA signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app