Add like
Add dislike
Add to saved papers

Sustained neurotrophic factor cotreatment enhances donor and host retinal ganglion cell survival in mice.

bioRxiv 2024 March 13
Retinal ganglion cells (RGCs) lack regenerative capacity in mammals, and their degeneration in glaucoma leads to irreversible blindness. Traditional RGC transplantation has been limited by poor survival rates of transplanted cells in the hostile microenvironment of a diseased retina. Our research identifies brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF) as key elements in retinal development and RGC survival through in silico analysis of the single-cell transcriptome of developing human retinas. Although these factors are abundant during development, they diminish in adulthood. Here, we demonstrate that a slow-release formulation of BDNF and GDNF enhances RGC differentiation and survival in vitro and improves RGC transplantation outcomes in mouse models. This co-treatment increased survival and coverage of donor RGCs within the retina and enhanced neurite extension toward the optic nerve head. Lastly, this co-treatment showed neuroprotective effects on host RGCs, preserving retinal function in a model of optic neuropathy. Altogether, our findings suggest that manipulating the retinal microenvironment with slow-release neurotrophic factors holds promise in regenerative medicine for treating glaucoma and other optic neuropathies. This approach not only improves donor cell survival and integration but also provides a neuroprotective benefit to host cells, indicating a significant advancement for glaucoma therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app