Add like
Add dislike
Add to saved papers

A self-elastic chitosan sponge integrating active and passive hemostatic mechanisms for effectively managing uncontrolled coagulopathic hemorrhage.

Developing a self-elastic sponge integrating active and passive hemostatic mechanisms for the effective management of uncontrolled coagulopathic hemorrhage remains a challenge. We here developed a chitosan-based sponge by integrating freeze-drying, chemical decoration of alkyl chains and phosphate groups, and physical loading of thrombin. The sponge exhibited high mechanical strength, self-elasticity, and rapid shape recovery. The sponge facilitated blood cell adhesion, aggregation, and activation through hydrophobic and electrostatic interactions, as well as accelerated blood clotting. The sponge exhibited higher efficacy than commercial gauze and gelatin sponge in managing uncontrolled hemorrhage from heparinized rat tail amputation, liver superficial injury, and liver perforating wound models. In addition, the sponge exhibited favorable biodegradability and biocompatibility. These findings revealed that the developed sponge holds great potential as a novel hemostat for effectively managing uncontrolled coagulopathic hemorrhage from superficial and perforating wounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app