Add like
Add dislike
Add to saved papers

A Novel Piezoelectric Energy Harvester for Earcanal Dynamic Motion Exploitation Using a Bistable Resonator Cycled by Coupled Hydraulic Valves Made of Collapsed Flexible Tubes.

Micromachines 2024 March 21
Scavenging energy from the earcanal's dynamic motion during jaw movements may be a practical way to enhance the battery autonomy of hearing aids. The main challenge is optimizing the amount of energy extracted while working with soft human tissues and the earcanal's restricted volume. This paper proposes a new energy harvester concept: a liquid-filled earplug which transfers energy outside the earcanal to a generator. The latter is composed of a hydraulic amplifier, two hydraulic cylinders that actuate a bistable resonator to raise the source frequency while driving an amplified piezoelectric transducer to generate electricity. The cycling of the resonator is achieved using two innovative flexible hydraulic valves based on the buckling of flexible tubes. A multiphysics-coupled model is established to determine the system operation requirements and to evaluate its theoretical performances. This model exhibits a theoretical energy conversion efficiency of 85%. The electromechanical performance of the resonator coupled to the piezoelectric transducer and the hydraulic behavior of the valves are experimentally investigated. The global model was updated using the experimental data to improve its predictability toward further optimization of the design. Moreover, the energy losses are identified to enhance the entire proposed design and improve the experimental energy conversion efficiency to 26%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app