Add like
Add dislike
Add to saved papers

The GARD Prebiotic Reproduction Model Described in Order and Complexity.

Life 2024 Februrary 22
Early steps in the origin of life were necessarily connected to the unlikely formation of self-reproducing structures from chaotic chemistry. Simulations of chemical kinetics based on the graded autocatalysis replication domain (GARD) model demonstrate the ability of a micellar system to become self-reproducing units away from equilibrium. Even though they may be very rare in the initial state of the system, the property of their endogenous mutually catalytic networks being dynamic attractors greatly enhanced reproduction propensity, revealing their potential for selection and Darwinian evolution processes. In parallel, order and complexity have been shown to be crucial parameters in successful evolution. Here, we probe these parameters in the dynamics of GARD-governed entities in an attempt to identify characteristic mechanisms of their development in non-covalent molecular assemblies. Using a virtual random walk perspective, a value for consecutive order is defined based on statistical thermodynamics. The complexity, on the other hand, is determined by the size of a minimal algorithm fully describing the statistical properties of the random walk. By referring to a previously published diagonal line in an order/complexity diagram that represents the progression of evolution, it is shown that the GARD model has the potential to advance in this direction. These results can serve as a solid foundation for identifying general criteria for future analyses of evolving systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app