Add like
Add dislike
Add to saved papers

Investigation of Guar Gum and Xanthan Gum Influence on Essential Thyme Oil Emulsion Properties and Encapsulation Release Using Modeling Tools.

This study explores the influence of hydrocolloid interactions between Guar Gum (GG) and Xanthan Gum (XG) on the stability and release dynamics of essential thyme oil emulsions. We systematically characterized six emulsions with varying GG and XG ratios, employing spray-drying techniques for the encapsulation process. The stability of the emulsions was quantitatively analyzed, revealing a marked decrease in stability rates correlated with higher initial emulsion activity (zero-order kinetic constant r = -0.972). Furthermore, this study demonstrated that emulsions with carefully optimized hydrocolloid ratios could achieve high encapsulation efficiency (74%) and controlled release profiles. Kinetic modeling and diffusion analyses elucidated that increased XG concentrations tend to reduce diffusivity, thereby enhancing emulsion stability. The effective diffusivity of the thyme oil within the emulsion matrix was determined to be within a range of 0.7 to 2.4 × 10-10 m2 /s, significantly influencing release kinetics. The Pearson correlation matrix underlined a substantial negative association between emulsion activity and effective diffusivity (r = -0.740), indicating that denser hydrocolloid networks impede oil mobility. The findings conclusively establish that the interplay of GG and XG concentrations is pivotal in dictating the emulsion's physicochemical properties, with denser networks formed by higher XG content leading to slower oil release rates and enhanced stability. This research provides critical insights for the design of encapsulated food and pharmaceutical products, highlighting the imperative of strategic hydrocolloid selection to realize specific functional attributes and performance criteria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app