Add like
Add dislike
Add to saved papers

Colorimetric biosensor based on aptamer recognition-induced multi-DNA release and peroxidase-mimicking three-way junction DNA-Ag/PtNCs for the detection of Salmonella typhimurium.

Talanta 2024 March 25
Salmonella typhimurium, as a major foodborne pathogen, poses a serious threat to public health safety worldwide. Here, we present a colorimetric biosensor based on aptamer recognition-induced multi-DNA release and peroxidase-mimicking three-way junction DNA-silver/platinum bimetallic nanoclusters (3WJ/DNA-Ag/PtNCs) for the detection of S. typhimurium. In this method, S. typhimurium specifically binds to the aptamer and releases multiple cDNAs to form the three-way junction DNA structure and synthesize silver/platinum bimetallic nanoclusters, which induces signaling changes. Interestingly and importantly, the use of 3WJ/DNA as the template for synthesizing Ag/PtNCs gives the method an extremely low background signal. Under the optimal conditions, the constructed biosensor had a linear response range of 2.6 × 102 -2.6 × 106  CFU/mL and a detection limit of 2.6 × 102  CFU/mL for the detection of S. typhimurium. In addition, the proposed method can effectively detect S. typhimurium in milk.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app