Add like
Add dislike
Add to saved papers

A Novel Method for Targeted Identification of Essential Proteins by Integrating Chemical Reaction Optimization and Naive Bayes Model.

Targeted identification of essential proteins is of great significance for species identification, drug manufacturing, and disease treatment. It is a challenge to analyze the binding mechanism between essential proteins and improve the identification speed while ensuring the accuracy of the identification. This paper proposes a novel method called EPCRO for identifying essential proteins, which incorporates the chemical reaction optimization (CRO) algorithm and the naive Bayes model to effectively detect essential proteins. In EPCRO, the naive Bayes model is employed to analyze the homogeneity between proteins. In order to improve the identification rate and speed of essential proteins, the protein homogeneity rate is integrated into the CRO algorithm to balance between local and global searches. EPCRO is experimentally compared with 17 existing methods (including, DC, SC, IC, EC, LAC, NC, PeC, WDC, EPD-RW, RWHN, TEGS, CFMM, BSPM, AFSO-EP, CVIM, RWEP, and EPPSODC) based on biological datasets. The results show that EPCRO is superior to the above methods in identification accuracy and speed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app