Add like
Add dislike
Add to saved papers

Distributed State Estimation for Flapping-Wing Micro Air Vehicles with Information Fusion Correction.

Biomimetics 2024 March 11
In this paper, we explore a nonlinear interactive network system comprising nodalized flapping-wing micro air vehicles (FMAVs) to address the distributed H∞ state estimation problem associated with FMAVs. We enhance the model by introducing an information fusion function, leading to an information-fusionized estimator model. This model ensures both estimation accuracy and the completeness of FMAV topological information within a unified framework. To facilitate the analysis, each FMAV's received signal is individually sampled using independent and time-varying samplers. Transforming the received signals into equivalent bounded time-varying delays through the input delay method yields a more manageable and analyzable time-varying nonlinear network error system. Subsequently, we construct a Lyapunov-Krasovskii functional (LKF) and integrate it with the refined Wirtinger and relaxed integral inequalities to derive design conditions for the FMAVs' distributed H∞ state estimator, minimizing conservatism. Finally, we validate the effectiveness and superiority of the designed estimator through simulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app