Add like
Add dislike
Add to saved papers

Effect of Hydrogel Stiffness on Chemoresistance of Breast Cancer Cells in 3D Culture.

Gels 2024 March 18
Chemotherapy is one of the most common strategies for cancer treatment, whereas drug resistance reduces the efficiency of chemotherapy and leads to treatment failure. The mechanism of emerging chemoresistance is complex and the effect of extracellular matrix (ECM) surrounding cells may contribute to drug resistance. Although it is well known that ECM plays an important role in orchestrating cell functions, it remains exclusive how ECM stiffness affects drug resistance. In this study, we prepared agarose hydrogels of different stiffnesses to investigate the effect of hydrogel stiffness on the chemoresistance of breast cancer cells to doxorubicin (DOX). Agarose hydrogels with a stiffness range of 1.5 kPa to 112.3 kPa were prepared and used to encapsulate breast cancer cells for a three-dimensional culture with different concentrations of DOX. The viability of the cells cultured in the hydrogels was dependent on both DOX concentration and hydrogel stiffness. Cell viability decreased with DOX concentration when the cells were cultured in the same stiffness hydrogels. When DOX concentration was the same, breast cancer cells showed higher viability in high-stiffness hydrogels than they did in low-stiffness hydrogels. Furthermore, the expression of P-glycoprotein mRNA in high-stiffness hydrogels was higher than that in low-stiffness hydrogels. The results suggested that hydrogel stiffness could affect the resistance of breast cancer cells to DOX by regulating the expression of chemoresistance-related genes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app