Add like
Add dislike
Add to saved papers

Electrical-Controllable Antiferromagnet-Based Tunnel Junction.

Nano Letters 2024 March 28
An electrical-controllable antiferromagnet tunnel junction is a key goal in spintronics, holding immense promise for ultradense and ultrastable antiferromagnetic memory with high processing speed for modern information technology. Here, we have advanced toward this goal by achieving an electrical-controllable antiferromagnet-based tunnel junction of Pt/Co/Pt/Co/IrMn/MgO/Pt. The exchange coupling between antiferromagnetic IrMn and Co/Pt perpendicular magnetic multilayers results in the formation of an interfacial exchange bias and exchange spring in IrMn. Encoding information states "0" and "1" is realized through the exchange spring in IrMn, which can be electrically written by spin-orbit torque switching with high cyclability and electrically read by antiferromagnetic tunneling anisotropic magnetoresistance. Combining spin-orbit torque switching of both exchange spring and exchange bias, a 16 Boolean logic operation is successfully demonstrated. With both memory and logic functionalities integrated into our electrically controllable antiferromagnetic-based tunnel junction, we chart the course toward high-performance antiferromagnetic logic-in-memory.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app