Add like
Add dislike
Add to saved papers

Excitons, optical spectra, and electronic properties of semiconducting Hf-based MXenes.

Semiconducting MXenes are an intriguing two-dimensional (2D) material class with promising electronic and optoelectronic properties. Here, we focused on recently prepared Hf-based MXenes, namely, Hf3C2O2 and Hf2CO2. Using the first-principles calculation and excited state corrections, we proved their dynamical stability, reconciled their semiconducting behavior, and obtained fundamental gaps by using the many-body GW method (indirect 1.1 and 2.2 eV; direct 1.4 and 3.5 eV). Using the Bethe-Salpeter equation, we subsequently provided optical gaps (0.9 and 2.7 eV, respectively), exciton binding energies, absorption spectra, and other properties of excitons in both Hf-based MXenes. The indirect character of both 2D materials further allowed for a significant decrease of excitation energies by considering indirect excitons with exciton momentum along the Γ-M path in the Brillouin zone. The first bright excitons are strongly delocalized in real space while contributed by only a limited number of electron-hole pairs around the M point in the k-space from the valence and conduction band. A diverse range of excitonic states in Hf3C2O2 MXene lead to a 4% and 13% absorptance for the first and second peaks in the infrared region of absorption spectra, respectively. In contrast, a prominent 28% absorptance peak in the visible region appears in Hf2CO2 MXene. Results from radiative lifetime calculations indicate the promising potential of these materials in optoelectric devices requiring sustained and efficient exciton behavior.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app