Add like
Add dislike
Add to saved papers

Divergent composition and transposon-silencing activity of small RNAs in mammalian oocytes.

Genome Biology 2024 March 27
BACKGROUND: Small RNAs are essential for germ cell development and fertilization. However, fundamental questions remain, such as the level of conservation in small RNA composition between species and whether small RNAs control transposable elements in mammalian oocytes.

RESULTS: Here, we use high-throughput sequencing to profile small RNAs and poly(A)-bearing long RNAs in oocytes of 12 representative vertebrate species (including 11 mammals). The results show that miRNAs are generally expressed in the oocytes of each representative species (although at low levels), whereas endo-siRNAs are specific to mice. Notably, piRNAs are predominant in oocytes of all species (except mice) and vary widely in length. We find PIWIL3-associated piRNAs are widespread in mammals and generally lack 3'-2'-O-methylation. Additionally, sequence identity is low between homologous piRNAs in different species, even among those present in syntenic piRNA clusters. Despite the species-specific divergence, piRNAs retain the capacity to silence younger TE subfamilies in oocytes.

CONCLUSIONS: Collectively, our findings illustrate a high level of diversity in the small RNA populations of mammalian oocytes. Furthermore, we identify sequence features related to conserved roles of small RNAs in silencing TEs, providing a large-scale reference for future in-depth study of small RNA functions in oocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app