Add like
Add dislike
Add to saved papers

FXR/Menin-mediated epigenetic regulation of E2F3 expression controls β-cell proliferation and is increased in islets from diabetic GK rats after RYGB.

Farnesoid X receptor (FXR) improves the function of islets, especially in the setting of Roux-en-Y gastric bypass (RYGB). Here we investigated how FXR activation regulates β-cell proliferation and explored the potential link between FXR signaling and the menin pathway in controlling E2F3 expression, a key transcription factor for controlling adult β-cell proliferation. Stimulation with the FXR agonist GW4064 or chenodeoxycholic acid (CDCA) increased E2F3 expression and β-cell proliferation. Consistently, E2F3 knockdown abolished GW4064-induced proliferation. Treatment with GW4064 increased E2F3 expression in β-cells via enhancing Steroid receptor coactivator-1 (SRC1) recruitment, increasing the pro-transcriptional acetylation of histone H3 at the E2f3 promoter. GW4064 treatment also decreased the association between FXR and menin, leading to the induction of FXR-mediated SRC1 recruitment. Mimicking the impact of FXR agonists, RYGB also increased E2F3 expression and β-cell proliferation in GK rats and SD rats. These findings unravel the crucial role of the FXR/menin signaling in epigenetically controlling E2F3 expression and β-cell proliferation, a mechanism possibly underlying RYGB-induced β-cell proliferation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app