Add like
Add dislike
Add to saved papers

Resilient event-triggering adaptive neural network control for networked systems under mixed cyber attacks.

This paper addresses the resilient event-triggering adaptive neural network (NN) control problem for networked control systems under mixed cyber attacks. Compared with the conventional event-triggered mechanism (ETM) with constant threshold, a novel resilient ETM is designed to withstand the affect of denial-of-service attacks and conserve communication resources. Different from the energy-bounded deception attacks, an unknown state-dependent nonlinear attack signal is considered in this work. To identify the deception attack, the NN technique is utilized to approximate the unknown attack signal. Subsequently, an adaptive controller is established to compensate for the malicious affects of deception attacks on the system. Furthermore, sufficient conditions for the boundedness of the system are derived via applying the Lyapunov functional, and a co-design strategy for control gain and event-triggering parameter is provided. Finally, the feasibility of the proposed approach is validated through a robot manipulator system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app