Add like
Add dislike
Add to saved papers

The NF-κB/NUAK2 signaling axis regulates pancreatic cancer progression by targeting SMAD2/3.

IScience 2024 April 20
Nuclear factor kappa B (NF-κB) plays a pivotal role in the development of pancreatic cancer, and its phosphorylation has previously been linked to the regulation of NUAK2. However, the regulatory connection between NF-κB and NUAK2, as well as NUAK2's role in pancreatic cancer, remains unclear. In this study, we observed that inhibiting NUAK2 impeded the proliferation, migration, and invasion of pancreatic cancer cells while triggering apoptosis. NUAK2 overexpression partially resisted apoptosis and reversed the inhibitory effects of the NF-κB inhibitor. NF-κB transcriptionally regulated NUAK2 transcription by binding to the promoter region of NUAK2. Mechanistically, NUAK2 knockdown remarkably reduced the expression levels of p -SMAD2/3 and SMAD2/3, resulting in decreased nuclear translocation of SMAD4. In SMAD4-negative cells, NUAK2 knockdown impacted FAK signaling by downregulating SMAD2/3. Moreover, NUAK2 knockdown heightened the sensitivity of pancreatic cancer cells to gemcitabine, suggesting that NUAK2 inhibitors could be a promising strategy for pancreatic cancer treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app