Add like
Add dislike
Add to saved papers

Catching an Oxo Vanadate Porous Acetylacetonate Covalent Adaptive Catalytic Network that Renders Mustard-Gas Simulant Harmless.

Inorganic Chemistry 2024 March 21
In this work, we illustrated the design and development of a metal-coordinated porous organic polymer ( POP ) namely VO@TPA-POP via a post-synthetic metalation strategy to incorporate oxo-vanadium sites in a pristine polymer ( TPA-POP ) having acetylacetonate (acac) as anchoring moiety. The as-synthesized VO@TPA-POP exhibited highly robust and porous framework, which has been utilized for thioanisole (TA) oxidation to its corresponding sulfoxide. The catalyst demonstrated notable stability and recyclability by maintaining its catalytic activity over multiple reaction cycles without any significant loss in activity. The X-ray absorption spectroscopy (XAS) and density functional theory (DFT) analysis establish the existence of V(+4) oxidation state along with the VO(O)4 active sites into the porous network and the most energetically feasible mechanistic pathway involved in the TA oxidation, respectively, indicating the role of electron density associated with vanadium center during the catalytic transformation. Thus, this work aims at the demonstration of versatility and potential of VO@TPA-POP as a porous heterogeneous catalyst for the TA oxidation followed by decontamination of sulfur mustards (HD's) to their corresponding less toxic sulfoxides in a more efficient and greener way.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app