Add like
Add dislike
Add to saved papers

Dietary L-Methionine modulates the gut microbiota and improves the expression of tight junctions in an in vitro model of the chicken gastrointestinal tract.

Animal microbiome. 2024 March 20
BACKGROUND: The poultry industry encounters a number of factors that affect growth performance and productivity; nutrition is essential for sustaining physiological status and protecting against stressors such as heat, density, and disease. The addition of vitamins, minerals, and amino acids to the diet can help restore productivity and support the body's defense mechanisms against stress. Methionine (Met) is indispensable for poultry's energy metabolism, physiology, performance, and feed utilization capacity. Through this study, we aimed to examine the physiological effects of methionine supplementation on poultry as well as alterations of intestinal microbiome.

METHODS: We utilized the DL- and L- form of methionine on Caenorhabditis elegans and the FIMM (Fermentor for intestine microbiota model) in-vitro digesting system. A genomic-analysis of the transcriptome confirmed that methionine supplementation can modulate growth-related physiological metabolic pathways and immune responses in the host poultry. The C. elegans model was used to assess the general health benefits of a methionine supplement for the host.

RESULTS: Regardless of the type or concentration of methionine, supplementation with methionine significantly increased the lifespan of C. elegans. Feed grade L-Methionine 95%, exhibited the highest lifespan performance in C. elegans. Methionine supplementation increased the expression of tight junction genes in the primary intestinal cells of both broiler and laying hens, which is directly related to immunity. Feed grade L-Methionine 95% performed similarly or even better than DL-Methionine or L-Methionine treatments with upper doses in terms of enhancing intestinal integrity. In vitro microbial cultures of healthy broilers and laying hens fed methionine revealed changes in intestinal microflora, including increased Clostridium, Bacteroides, and Oscillospira compositions. When laying hens were given feed grade L-Methionine 95% and 100%, pathogenic Campylobacter at the genus level was decreased, while commensal bacteria were increased.

CONCLUSIONS: Supplementation of feed grade L-Methionine, particularly L-Methionine 95%, was more beneficial to the host poultry than supplementing other source of methionine for maintaining intestinal integrity and healthy microbiome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app