Add like
Add dislike
Add to saved papers

Two-color electromagnetically induced transparency generated slow light in double-mechanical-mode coupling carbon nanotube resonators.

IScience 2024 April 20
We theoretically propose a multiple-mode-coupling hybrid quantum system comprising two-mode-coupling nanomechanical carbon nanotube (CNT) resonators realized by a phase-dependent phonon-exchange interaction interacting with the same nitrogen-vacancy (NV) center in diamond. We investigate the coherent optical responses of the NV center under the condition of resonance and detuning. In particular, two-color electromagnetically induced transparency (EIT) can be achieved by controlling the system parameters and coupling regimes. Combining the spin-phonon interactions and phonon-phonon coupling with the modulation phase, the switching of one and two EIT windows has been demonstrated, which generates a light delay or advance. The slow-to-fast and fast-to-slow light transitions have been studied in different coupling regimes, and the switch between slow and fast light can be controlled periodically by tuning the modulation phase. The study can be applied to phonon-mediated optical information storage or information processing with spin qubits based on multiple-mode hybrid quantum systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app