Add like
Add dislike
Add to saved papers

Shape-Aware 3D Small Vessel Segmentation with Local Contrast Guided Attention.

The automated segmentation and analysis of small vessels from in vivo imaging data is an important task for many clinical applications. While current filtering and learning methods have achieved good performance on the segmentation of large vessels, they are sub-optimal for small vessel detection due to their apparent geometric irregularity and weak contrast given the relatively limited resolution of existing imaging techniques. In addition, for supervised learning approaches, the acquisition of accurate pixel-wise annotations in these small vascular regions heavily relies on skilled experts. In this work, we propose a novel self-supervised network to tackle these challenges and improve the detection of small vessels from 3D imaging data. First, our network maximizes a novel shape-aware flux-based measure to enhance the estimation of small vasculature with non-circular and irregular appearances. Then, we develop novel local contrast guided attention(LCA) and enhancement(LCE) modules to boost the vesselness responses of vascular regions of low contrast. In our experiments, we compare with four filtering-based methods and a state-of-the-art self-supervised deep learning method in multiple 3D datasets to demonstrate that our method achieves significant improvement in all datasets. Further analysis and ablation studies have also been performed to assess the contributions of various modules to the improved performance in 3D small vessel segmentation. Our code is available at https://github.com/dengchihwei/LCNetVesselSeg.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app