Add like
Add dislike
Add to saved papers

In vitro detection of circulating tumor cells using the nicking endonuclease-assisted lanthanide metal luminescence amplification strategy.

Talanta 2024 March 15
The in vitro detection of circulating tumor cells (CTCs) has been proven as a vital method for early diagnosis and evaluation of cancer metastasis, since the existence and number fluctuation of CTCs have shown close correlation with clinical outcomes. However, it remains difficult and technically challenging to realize accurate CTCs detection, due to the rarity of CTCs in the blood samples with complex components. Herein, we reported a CTCs in vitro detection strategy, utilizing a loop amplification strategy based on DNA tetrahedron and nicking endonuclease reaction, as well as the anti-background interference based on lanthanide metal luminescence strategy. In this work, a detection system (ATDN-MLLPs) composed of an aptamer-functionalized tetrahedral DNA nanostructure (ATDN) and magnetic lanthanide luminescent particles (MLLPs) was developed. ATDN targeted the tumor cells via aptamer-antigen recognition and extended three hybridizable target DNA segments from the apex of a DNA tetrahedron to pair with probe DNA on MLLPs. Then, the nicking endonuclease (Nt.BbvCI) recognized the formed double-strand DNA and nicked the probe DNA to release the target DNA for recycling, and the released TbNps served as a high signal-to-noise ratio fluorescence signal source for CTCs detection. With a detection limit of 5 cells/mL, CTCs were selectively screened throughout a linear response range of low orders of magnitude. In addition, the ATDN-MLLPs system was attempted to detect possible existence of CTCs in biological samples in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app