Add like
Add dislike
Add to saved papers

Ensemble dynamics and information flow deduction from whole-brain imaging data.

The recent advancements in large-scale activity imaging of neuronal ensembles offer valuable opportunities to comprehend the process involved in generating brain activity patterns and understanding how information is transmitted between neurons or neuronal ensembles. However, existing methodologies for extracting the underlying properties that generate overall dynamics are still limited. In this study, we applied previously unexplored methodologies to analyze time-lapse 3D imaging (4D imaging) data of head neurons of the nematode Caenorhabditis elegans. By combining time-delay embedding with the independent component analysis, we successfully decomposed whole-brain activities into a small number of component dynamics. Through the integration of results from multiple samples, we extracted common dynamics from neuronal activities that exhibit apparent divergence across different animals. Notably, while several components show common cooperativity across samples, some component pairs exhibited distinct relationships between individual samples. We further developed time series prediction models of synaptic communications. By combining dimension reduction using the general framework, gradient kernel dimension reduction, and probabilistic modeling, the overall relationships of neural activities were incorporated. By this approach, the stochastic but coordinated dynamics were reproduced in the simulated whole-brain neural network. We found that noise in the nervous system is crucial for generating realistic whole-brain dynamics. Furthermore, by evaluating synaptic interaction properties in the models, strong interactions within the core neural circuit, variable sensory transmission and importance of gap junctions were inferred. Virtual optogenetics can be also performed using the model. These analyses provide a solid foundation for understanding information flow in real neural networks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app