Add like
Add dislike
Add to saved papers

Control of the Hydroquinone/Benzoquinone Redox State in High-Mobility Semiconducting Conjugated Coordination Polymers.

Angewandte Chemie 2024 March 16
Conjugated coordination polymers (c-CPs) are unique organic-inorganic hybrid semiconductors with intrinsically high electrical conductivity and excellent charge carrier mobility. However, it remains a challenge in tailoring electronic structures, due to the lack of clear guidelines. Here, we develop a strategy wherein controlling the redox state of hydroquinone/benzoquinone (HQ/BQ) ligands allows for the modulation of the electronic structure of c-CPs while maintaining the structural topology. The redox-state control is achieved by reacting the ligand TTHQ (TTHQ = 1,2,4,5-tetrathiolhydroquinone) with silver acetate and silver nitrate, yielding Ag4TTHQ and Ag4TTBQ (TTBQ = 1,2,4,5-tetrathiolbenzoquinone), respectively. In spite of sharing the same topology consisting of two-dimensional Ag-S network and HQ/BQ layer, they exhibit different band gaps (1.5 eV for Ag4TTHQ and 0.5 eV for Ag4TTBQ) and conductivities (0.4 S/cm for Ag4TTHQ and 10 S/cm for Ag4TTBQ). DFT calculations reveal that these differences arise from the ligand oxidation state inhibiting energy band formation near the Fermi level in Ag4TTHQ. Consequently, Ag4TTHQ displays a high Seebeck coefficient of 330 μV/K and a power factor of 10 μW/m·K2, surpassing Ag4TTBQ and the other reported silver-based c-CPs. Furthermore, terahertz spectroscopy demonstrates high charge mobilities exceeding 130 cm2/V·s in both Ag4TTHQ and Ag4TTBQ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app