Add like
Add dislike
Add to saved papers

Extensive dynamic changes in the human transcriptome and its circadian organization during prolonged bed rest.

IScience 2024 March 16
Physiological and molecular processes including the transcriptome change across the 24-h day, driven by molecular circadian clocks and behavioral and systemic factors. It is not known how the temporal organization of the human transcriptome responds to a long-lasting challenge. This may, however, provide insights into adaptation, disease, and recovery. We investigated the human 24-h time series transcriptome in 20 individuals during a 90-day constant bed rest protocol. We show that the protocol affected 91% of the transcriptome with 76% of the transcriptome still affected after 10 days of recovery. Dimensionality-reduction approaches revealed that many affected transcripts were associated with mRNA translation and immune function. The number, amplitude, and phase of rhythmic transcripts, including clock genes, varied significantly across the challenge. These findings of long-lasting changes in the temporal organization of the transcriptome have implications for understanding the mechanisms underlying health consequences of conditions such as microgravity and bed rest.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app