Journal Article
Review
Add like
Add dislike
Add to saved papers

Static magnetic fields in regenerative medicine.

All organisms on Earth live in the weak but ubiquitous geomagnetic field. Human beings are also exposed to magnetic fields generated by multiple sources, ranging from permanent magnets to magnetic resonance imaging (MRI) in hospitals. It has been shown that different magnetic fields can generate various effects on different tissues and cells. Among them, stem cells appear to be one of the most sensitive cell types to magnetic fields, which are the fundamental units of regenerative therapies. In this review, we focus on the bioeffects of static magnetic fields (SMFs), which are related to regenerative medicine. Most reports in the literature focus on the influence of SMF on bone regeneration, wound healing, and stem cell production. Multiple aspects of the cellular events, including gene expression, cell signaling pathways, reactive oxygen species, inflammation, and cytoskeleton, have been shown to be affected by SMFs. Although no consensus yet, current evidence indicates that moderate and high SMFs could serve as a promising physical tool to promote bone regeneration, wound healing, neural differentiation, and dental regeneration. All in vivo studies of SMFs on bone regeneration and wound healing have shown beneficial effects, which unravel the great potential of SMFs in these aspects. More mechanistic studies, magnetic field parameter optimization, and clinical investigations on human bodies will be imperative for the successful clinical applications of SMFs in regenerative medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app