Add like
Add dislike
Add to saved papers

Designing Different Heterometallic Organic Frameworks by Heteroatom and Second Metal Doping Strategies for the Electrocatalytic Oxygen Evolution Reaction.

Inorganic Chemistry 2024 March 15
Metal-organic frameworks (MOFs) are considered one of the most significant electrocatalysts for the sluggish oxygen evolution reaction (OER). Hence, a series of novel N,S-codoped Ni-based heterometallic organic framework (HMOF) ( NiM-bptz-HMOF , M = Co, Zn, and Mn; bptz = 2,5-bis((3-pyridyl)methylthio)thiadiazole) precatalysts are constructed by the heteroatom and second metal doping strategies. The effective combination of the two strategies promotes electronic conductivity and optimizes the electronic structure of the metal. By regulation of the type and proportion of metal ions, the electrochemical performance of the OER can be improved. Among them, the optimized Ni 6 Zn 1 -bptz-HMOF precatalyst exhibits the best performance with an overpotential of 268 mV at 10 mA cm-2 and a small Tafel slope of 72.5 mV dec-1 . This work presents a novel strategy for the design of modest heteroatom-doped OER catalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app