Add like
Add dislike
Add to saved papers

Copper-based electrocatalyst for hydrogen evolution in water.

In aqueous pH 7 phosphate buffer, during controlled potential electrolysis (CPE) at -1.10 V vs. Ag|AgCl the literature square planar copper complex, [CuII LEt]BF4 (1), forms a heterogeneous deposit on the glassy carbon working electrode (GCWE) that is a stable and effective hydrogen evolution reaction (HER) electrocatalyst. Specifically, CPE for 20 hours using a small GCWE ( A = 0.071 cm2 ) gave a turnover number (TON) of 364, with ongoing activity. During CPE the brownish-yellow colour of the working solution fades, and a deposit is observed on the small GCWE. Repeating this CPE experiment in a larger cell with a larger GCWE ( A = 2.7 cm2 ), connected to a gas chromatograph, resulted in a TON of 2628 after 2.6 days, with FE = 93%, and with activity ongoing. After this CPE, the working solution had faded to nearly colourless, and visual inspection of the large GCWE showed a material had deposited on the surface. In a 'rinse and repeat test', this heterogeneous deposit was used for further CPE, in a freshly prepared working solution minus fresh catalyst, which resulted in similar ongoing HER activity to before, consistent with the surface deposited material being the active HER catalyst. EDS, PXRD and SEM analysis of this deposit shows that copper and oxygen are the main components present, most likely comprising copper and copper(I) oxide ((Cu2 O) n ) formed from 1. The use of 1 leads to a deposit that is more catalytically active than that formed when starting with a simple copper salt (control), likely due to it forming a more robustly attached deposit, which also enables the observed long-lived catalytic activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app