Add like
Add dislike
Add to saved papers

External Validation of a Dynamic Prediction Model for Upper Limb Function After Stroke.

OBJECTIVE: To externally validate the dynamic prediction model for prediction of upper limb (UL) function 6 months after stroke. The dynamic prediction model has been developed and cross-validated on data from 4 Dutch studies.

DESIGN: Data from a prospective Danish cohort study were used to assess prediction accuracy.

SETTING: A Danish neurorehabilitation hospital.

PARTICIPANTS: In this external validation study, follow-up data for 80 patients in the subacute phase after stroke (N=80), mean age 64 (SD11), 43% women, could be obtained. They were assessed at 2 weeks, 3 months, and 6 months after stroke with the Action Research Arm Test (ARAT), Fugl-Meyer Motor Assessment upper limb (FMA), and Shoulder Abduction (SA) Finger Extension (FE), (SAFE) test.

INTERVENTION: Not applicable.

MAIN OUTCOME MEASURES: Prediction accuracy at 6 months was examined for 3 categories of ARAT (0-57 points): mild (48-57), moderate (23-47), and severe (0-22). Two individual predictions of ARAT scores at ±6 months post-stroke were computed based on, respectively, baseline (2 weeks) and 3 months ARAT, FE, SA values. The absolute individual differences between observed and predicted ARAT scores were summarized.

RESULTS: The prediction model performed best for patients with relatively good UL motor function, with an absolute error median (IQR) of 3 (2-9), and worst for patients with severe UL impairment, with a median (IQR) of 30 (3-39) at baseline. In general, prediction accuracy substantially improved when data obtained 3 months after stroke was included compared with baseline at 2 weeks after stroke.

CONCLUSION: We found limited clinical usability due to the lack of prediction accuracy 2 weeks after stroke and for patients with severe UL impairments. The dynamic prediction model could probably be refined with data from biomarkers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app