Add like
Add dislike
Add to saved papers

Supercollisions of NaCl + NaCl on an Accurate Full-Dimensional Potential Energy Surface.

An accurate, global, full-dimensional potential energy surface (PES) of NaCl + NaCl has been constructed by the fundamental invariant-neural network (FI-NN) fitting based on roughly 13,000 ab initio energies at the level of CCSD(T)-F12a/aug-cc-pVTZ, with the small fitting error of 0.16 meV. Extensive quasiclassical trajectory (QCT) calculations were performed on this PES to investigate the energy transfer process of the NaCl + NaCl collision at four different collision energies. Various quantities were obtained, including the cross-sections, energy transfer probability, average energy transfer, and collision lifetime. The probabilities of energy transfer ( P (Δ E )) for prompt trajectories, nonreactive trajectories, and reactive trajectories deviate from a simple exponential decay pattern. Instead, a noteworthy probability is observed in the high-energy transfer region, indicative of supercollisions. The formation of the (NaCl)2 complex, coupled with a comparatively extended collision lifetime, promotes vibrational excitation in NaCl molecules. The reactive trajectories exhibit enhanced energy transfer, attributed to the longer lifetime of the NaCl dimer. This study not only provides an accurate and extensive understanding of the NaCl + NaCl collision dynamics but also reveals intriguing phenomena, such as supercollisions and enhanced energy transfer in reactive trajectories, shedding light on the complex intricacies of molecular interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app