Add like
Add dislike
Add to saved papers

Evaluation of the translation of multiple cardiovascular regulatory mechanisms in the anesthetized dog.

The strategic and targeted use of an anesthetized canine cardiovascular model early in drug discovery enables a comprehensive cardiovascular and electrophysiological assessment of potential safety liabilities and guides compound selection prior to initiation of chronic toxicological studies. An ideal model would enable exposure-response relationships to guide safety margin calculations, have a low threshold to initiate, and have quick delivery of decision quality data. We have aimed to profile compounds with diverse mechanism of actions (MoAs) of "non-QT" cardiovascular drug effects and evaluate the ability of nonclinical in vivo cardiovascular models to detect clinically reported effects. The hemodynamic effects of 11 drugs (atropine, itraconazole, atenolol, ivabradine, milrinone, enalaprilat, fasudil, amlodipine, prazosin, amiloride, and hydrochlorothiazide) were profiled in an anesthetized dog cardiovascular model. Derived parameters included: heart rate, an index of left ventricular contractility, mean arterial pressure, systemic vascular resistance, and cardiac output. Species specific plasma protein data was generated (human, dog) and utilized to calculate free drug concentrations. Using the anesthetized dog cardiovascular model, 10 of the 11 drugs displayed the predicted changes in CV parameters based on their primary MoAs and corresponding clinically described effects. Interestingly but not unexpected, 1 of 11 failed to display their predicted CV pattern which is likely due to a delay in pharmacodynamic effect that is beyond the duration of the experimental model (hydrochlorothiazide). The analysis from the current study supports the strategic use of the anesthetized dog model early in the drug discovery process for a comprehensive cardiovascular evaluation with good translation to human.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app