Add like
Add dislike
Add to saved papers

A facile paper-based chromatography coupled Au nanodendrite on nickel foam for application in separation and SERS measurement.

A simple paper-based chromatography coupling with nickel foam decorated Au nanodendrite (PP-AuND/NiF) was fabricated for simultaneous separation and surface-enhanced Raman scattering (SERS) detection of Rhodamine-6G (R6G) from a mixture of analytes. The three-dimensional porous nickel foam (NiF) was employed as a sampling diffusion platform, and AuND with a high surface active area beneficial for SERS efficiency was electro-deposited directly onto the NiF frame. The structure of AuND/NiF was characterized by X-ray diffraction and scanning electron microscopy. The AuND/NiF could detect R6G at 0.1 nM, and the enhancement factor was 1.84 x 106 . The AuND/NiF was durable, with a slight signal decrease after 6 m of drop-testing. Also, upon three days of exposure to ambient air, the signal droped only 3.35 %. Subsequently, the PP-AuND/NiF was constructed by directly situating AuND/NiF on a paper strip, serving as a sample in and out to AuND/NiF. A mixture of two SERS active compounds, namely 2-Naphthalenethiol (2-NpSH) and Rhodamine 6G (R6G), was prepared in ethanol: water (1:1) solution to evaluate PP-AuND/NiF separation capability. Raman measurements along different distances of AuND/NiF were performed, and the signal of 2-NpSH was dismissed after 3.0 mm, while R6G's signals were observed throughout AuND/NiF. In general, the PP-AuND/NiF demonstrated effective separation and SERS measurement of analytes in a mixture, which could be applicable for more complex samples in the future, especially in clinical analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app