Add like
Add dislike
Add to saved papers

Why Are Left-Handed G-Quadruplexes Scarce?

G-quadruplexes (G4s) are nucleic acid structures crucial for the regulation of gene expression and genome maintenance. While they hold promise as nanodevice components, achieving desired G4 folds requires understanding the interplay between stability and structural properties, like helicity. Although right-handed G4 structures dominate the experimental data, the molecular basis for this preference over left-handed helicity is unclear. To address this, we employ all-atom molecular dynamics simulations and quantum chemical methods. Our results reveal that right-handed G4s exhibit greater thermodynamic and kinetic stability as a result of favorable sugar-phosphate backbone conformations in guanine tracts. Moreover, while hydrogen-bonding patterns influence helicity-specific G4 loop conformations, they minimally affect stability differences. We also elucidate the strong correlation between helicity and the strand progression direction, essential for G4 structures. These findings deepen our understanding of G4s, providing molecular-level insights into their structural and energetic preferences, which could inform the design of novel nanodevices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app